Hydrogen Study: International H₂ Strategies

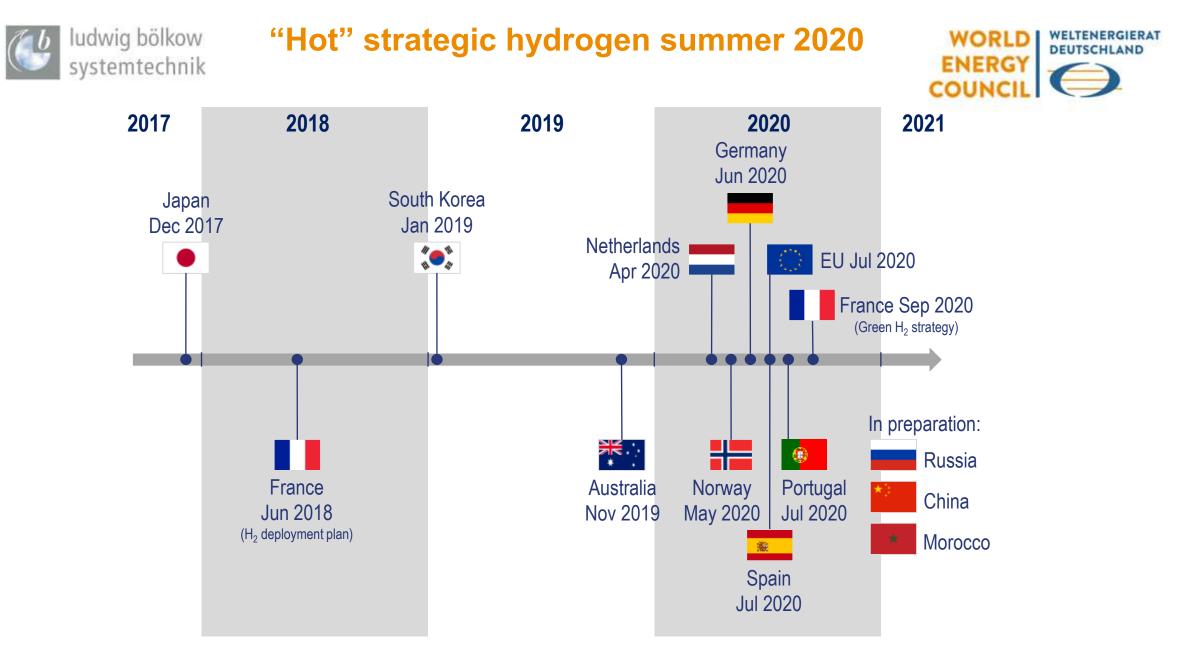
A study commissioned by and in cooperation with the World Energy Council – Germany

> Dr. Carsten Rolle (WEC) World Energy Council – Germany (WEC)

WORLD ENERGY COUNCIL

World Energy Council – Germany | 22 September 2020

Study objective: analyse and learn from H₂ strategies

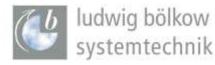


What is the national governmental support for H₂ technologies and applications? How can current experience benefit discussions of the European and German strategy?

National goals	 Which countries are supporting H₂ implementation? What are the goals of national governments in supporting hydrogen technologies and applications? 		→	Under intern and d
Target sectors and infrastructures	Which sectors, applications, and infrastructure developments are targeted primarily?	Selected	•	Taxor intern strate
Measures and H ₂ requirements	 Which support strategies or measures are discussed? What are associated requirements (e.g. blue vs. green H₂)? 	d countries	→	Put na into co Gene for up discus
Achievements and recommendations	 What has been achieved and what can be learned from developments so far? What are the conclusions for the EU and DE strategy? 		→	Identi for the discus

 Understand international trends and developments

- Taxonomy of international H₂ strategies
- Put national activities into context
- Generate a solid basis for upcoming discussions
- Identify major topics for the political discussion

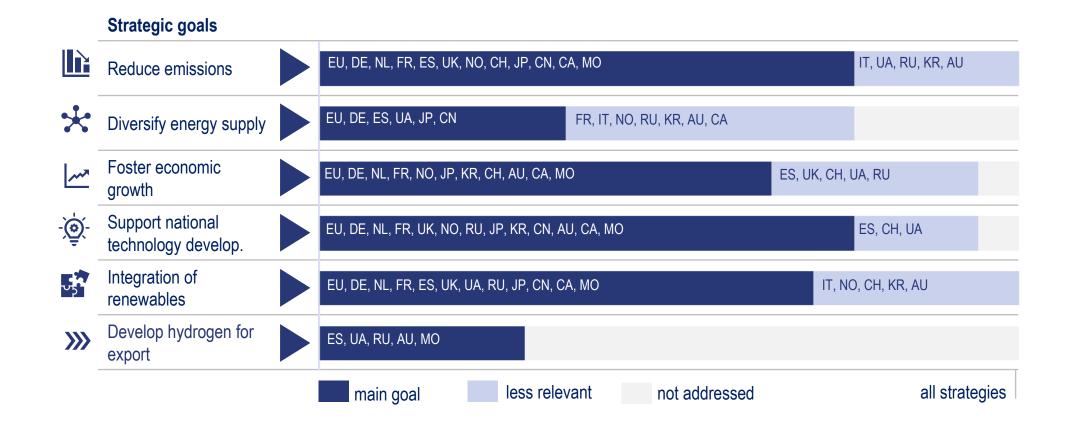


ludwig bölkow

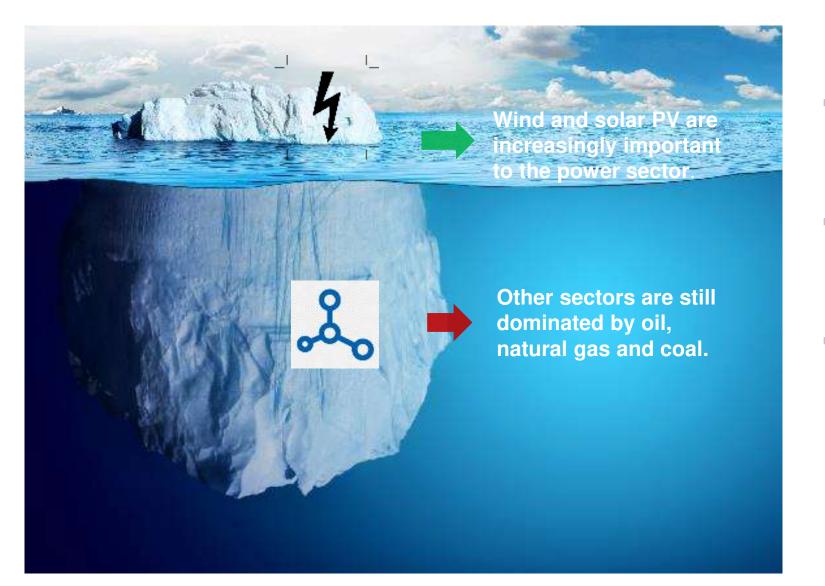
systemtechnik

National hydrogen strategy available National hydrogen strategy in preparation Support for pilot and demonstration projects Initial policy discussions No relevant activities Not assessed

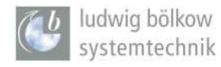
Overview H₂ strategies and activities (Status: August 2020)

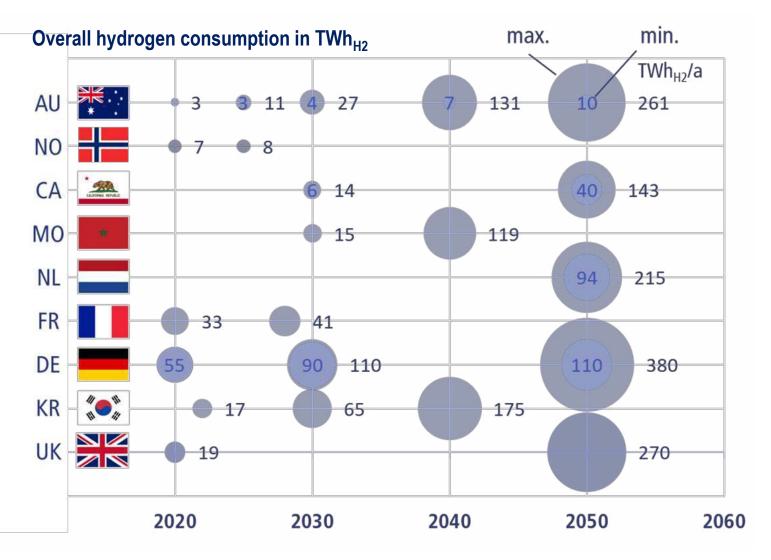


National H₂ strategies in place or in preparation in at least 20 countries

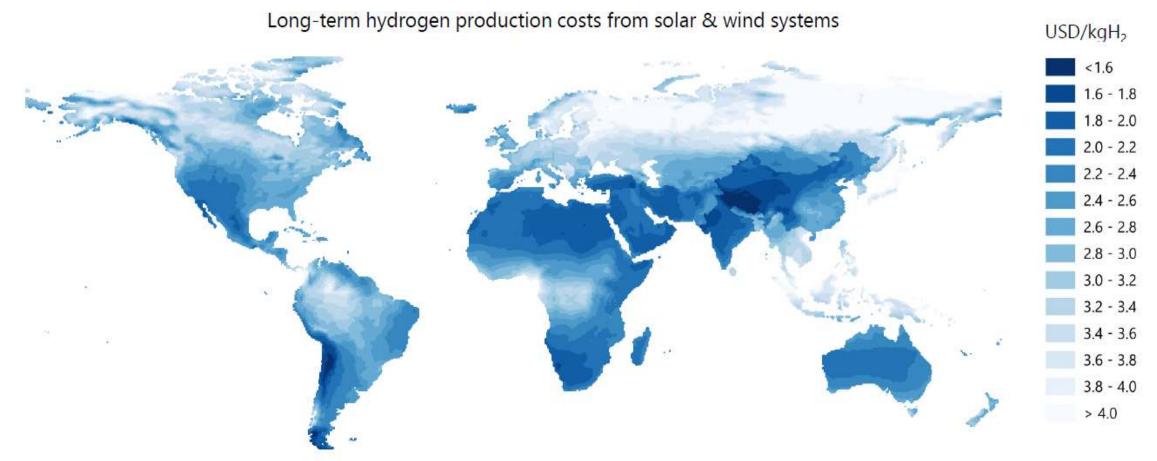

By 2025 H₂ strategies are expected to cover > 80% of global GDP

National hydrogen strategy available National hydrogen strategy in preparation Support for pilot and demonstration projects Initial policy discussions No relevant activities Not assessed



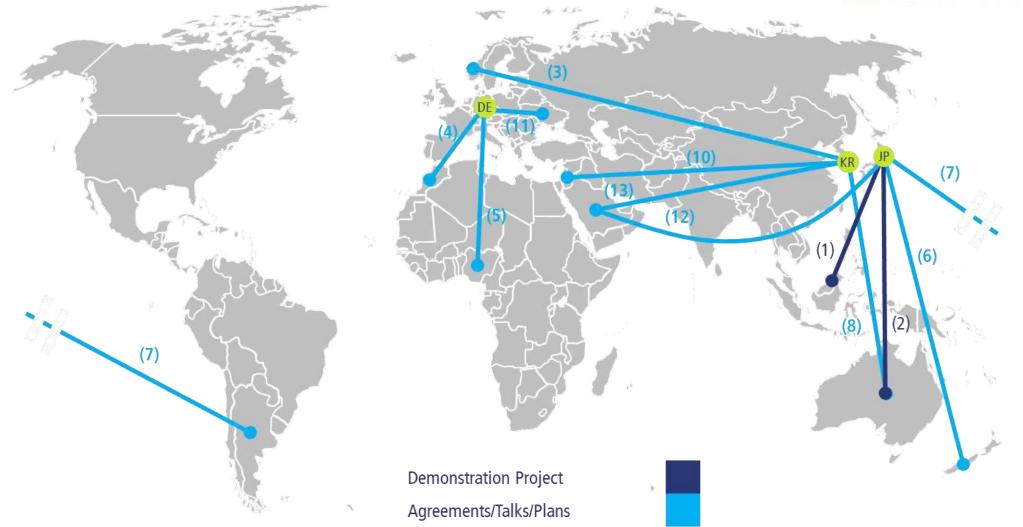

Climate-neutrality is only achievable with green molecules

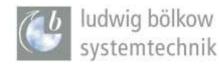
- Until recently global climate policy efforts have been focused on decarbonizing the **power sector.**
- According to IEA the electricity makes up only 19 % of global final energy consumption.
- Hydrogen is the key to addressing the remaining 81 % and bringing renewable electricity into industrial processes, transport, heating and cooling.


Expected hydrogen consumption

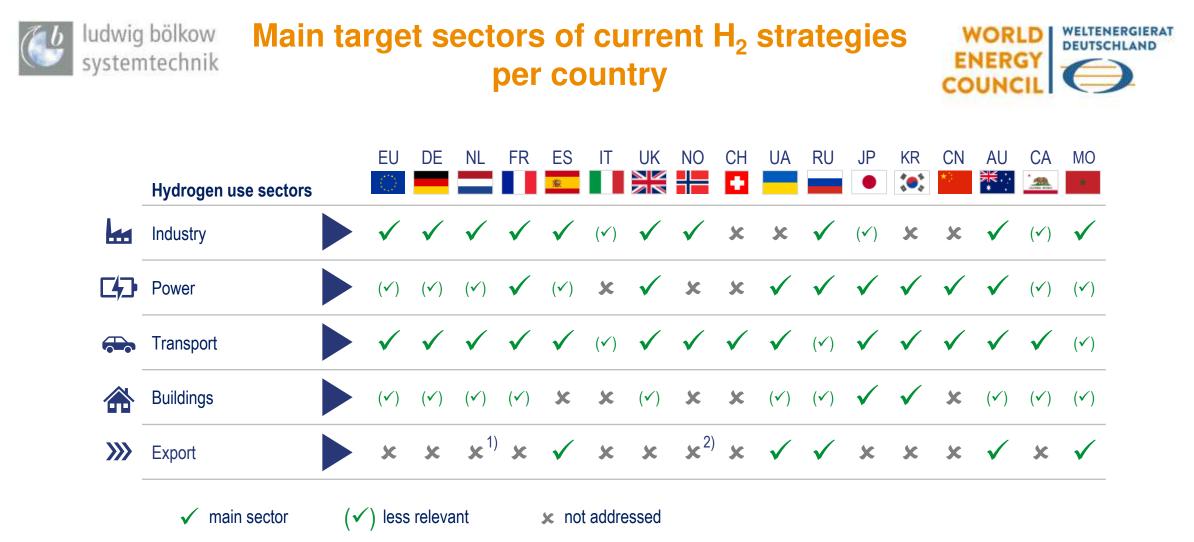
Scaling upper H₂ demand expected for 2050 in national strategies to global level indicates a potential of up to 9000 TWh (an amount almost as large as half the primary energy consumption of the EU-28)

International trade could help harnessing world's best production locations...



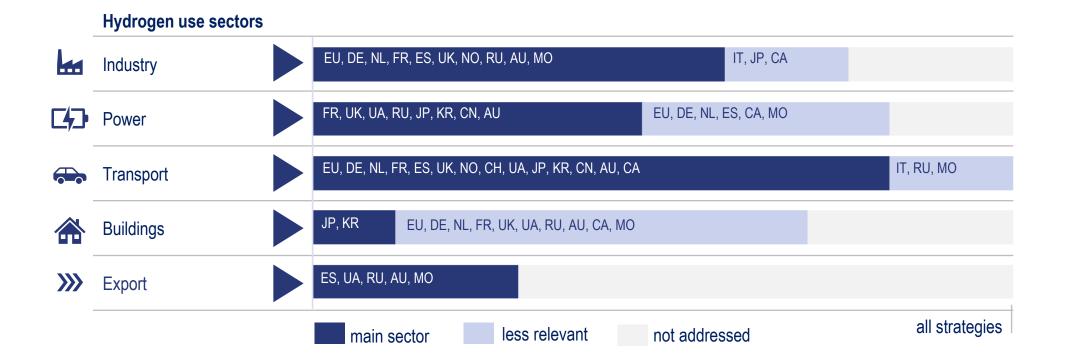

The declining costs of solar PV and wind could make them a low-cost source for hydrogen production in regions with favourable resource conditions.

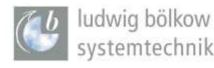
Hydrogen as an energy vector: International cooperation


Hydrogen as an energy vector: International cooperation

In several countries with high energy needs, a substantial share of demand will be served by imports, initially on the basis of bilateral agreements

Demonstration Project


greements/Talks/Plans

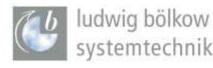


1) Hydrogen imports transit to other counties (e.g. Germany) considered.

2) For Norway, hydrogen is not targeted for direct export, but indirectly through the export of NG with local CCS.

Around 2030

Towards 2050


H₂-related requirements: the color of hydrogen

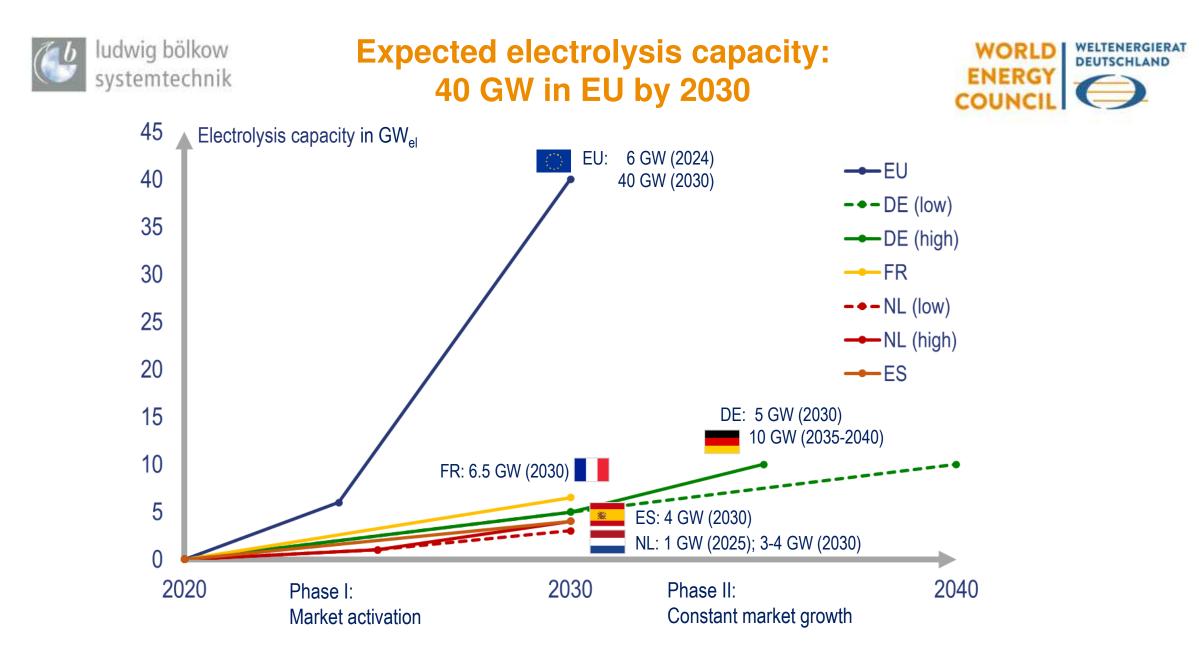
- Renewable and fossil-based hydrogen (with and without CCS) are generally considered viable medium-term sources.
- Methane pyrolysis for hydrogen production is mainly discussed as option in the German and Russian strategies.
- Renewable hydrogen is the most favorable hydrogen quality in the long-term. Various countries considering it the only viable long-term option.
 - Fossil based hydrogen with CCS is regarded a feasible hydrogen source in the long-term in a range of countries.

		EU	DE	NL	FR	ES	IT	UK	NO	CH	UA	RU	JP	KR	CN	AU	CA	MO
Main hydrogen sources		$\langle \bigcirc \rangle$				<u>.</u>				Ð				**	*1		CHIFONN ROVALC	*
Around 2030																		
Towards 2050							No data											
Renewable	F	ossil ba	ased w	vith CC	S		N	lethane	e pyroly	/sis			Fos	sil*				

* In Russia in 2050 mainly based on nuclear power

H₂-related requirements: the color of hydrogen

- Renewable and fossil-based hydrogen (with and without CCS) are generally considered viable medium-term sources.
- Methane pyrolysis for hydrogen production is mainly discussed as option in the German and Russian strategies


Green H₂ is central to all strategies;

blue H₂ mainly plays a role in a transition period before 2050

- Various countries considering it the only viable long-term option.
- Fossil based hydrogen with CCS is regarded a feasible hydrogen source in the long-term in a range of countries.

		EU	DE	NL	FR	ES	IT	UK	NO	CH	UA	RU	JP	KR	CN	AU	CA	MO
Main hydrogen sources	5	\odot				- (Ð				* •**	*1		CALFORN REVOLU	*
Around 2030																		
Towards 2050							No data											
Renewable	F	⁻ ossil ba	ased w	vith CC	S		N	lethane	e pyroly	/sis			Fos	sil*				

* In Russia in 2050 mainly based on nuclear power

National H₂ strategies in place or in preparation in at least 20 countries

By 2025 H_2 strategies are expected in countries representing > 80% of global GDP

A dynamically growing market for hydrogen

- Scaling upper H₂ demand expected for 2050 in national strategies to global level indicates a **potential of up to 9000 TWh**
- In several countries with high energy needs, a substantial share of this demand will be served by imports, initially on the basis of bilateral agreements
- Initial applications focus on the transport and industry sectors
- Green H₂ central to all strategies; blue H₂ mainly plays a role in a transition period before 2050
- Market ramp-up in 3 phases: activation (<2030) ⇒ growth (>2030) ⇒ established (2050)

Emerging opportunities for commercial actors

Large H₂ production capacities required

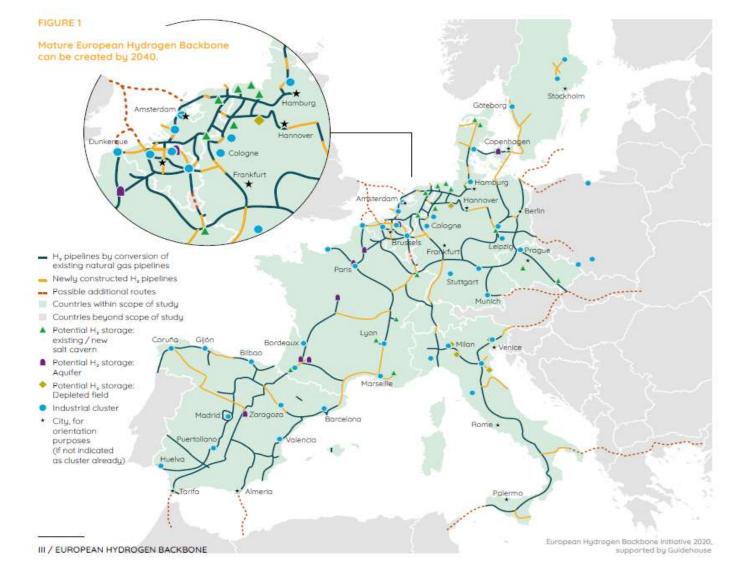
A > 40 B€ market alone in the EU until 2030

- Large industrial partnerships will be formed for production and export/import
- Refineries and chemical industry to become the first important large-scale green H₂ markets in the mid-term
- **Road transport market** (vehicles and trucks) currently stronger in Asia than in Europe
- Green synthetic liquid e-fuels (PtL) can grow into an interesting opportunity with large potential quantities particularly in the aviation and/or maritime sector

New policies needed to achieve strategic aims

Most strategies focus on targets rather than measures

Policy development is lagging behind strategic aims


Current measures insufficient to catalyse envisaged strong growth

- Building on earlier successes, policies should focus on commercialisation:
 - Sectoral quota stimulate large scale demand
 - Targeted support for establishing comprehensive value chains, providing nuclei for sustainable business
 - Move from CAPEX to OPEX support
 - Globally high CO₂ prices help further reduce cost gap
 - Provide long-term perspective and security of investment
- A broadly agreed green or low carbon hydrogen certification mechanism is crucial
- Infrastructure development requires public financing and central coordination for planning and harmonisation
- Complement all activities with measures supporting **public acceptance**

The vision for a European Hydrogen backbone

- First vision endorsed by the European gas transmission operators
- Presented by 11 TSOs from 9 member states

The companies foresee a network gradually emerging from the mid-2020s onwards to an initial 6,800 km pipeline network by 2030, connecting 'hydrogen valleys'. By 2040, a hydrogen network of 23,000 km is foreseen, 75% of which will consist of converted natural gas pipelines, connected by new pipeline stretches (25%).

The creation of an internal hydrogen market requires a **European joint approach**

Europe-wide harmonization and standardization of definitions and classification of renewable gases & hydrogen (also required for establishment of European certification scheme for hydrogen and accountability of green hydrogen towards EE- and CO2 emission reduction targets of end-consumers, e.g. RED II)

Interoperability of a European-wide hydrogen infrastructure and harmonization of the market design in place (e.g. regulation and financing of infrastructure)

Foster European research and innovation programs (H2020, regulatory sandboxes) as well as support mechanisms (IPCEI)

Revision of State Aid Rules to enable active funding of hydrogen projects (OPEX support)

The creation of a European internal market for hydrogen provides a chance to establish new value chains within Europe that foster the European Union, create new labor market and **could improve energy security.** -> EU COM proposes Euro denomintation of hydrogen transactions

Grazie mille! Danke! Thank you!

WORLD ENERGY COUNCIL

Contacts

Dr. Uwe Albrecht Managing Director T: +49 (0)89 608110-31 E: uwe.albrecht@lbst.de

Dr. Jan Michalski Project Manager T: +49 (0)89 608110-18 E: jan.michalski@lbst.de

Jan Zerhusen Senior Project Manager T: +49 (0)89 608110-23 E: jan.zerhusen@lbst.de

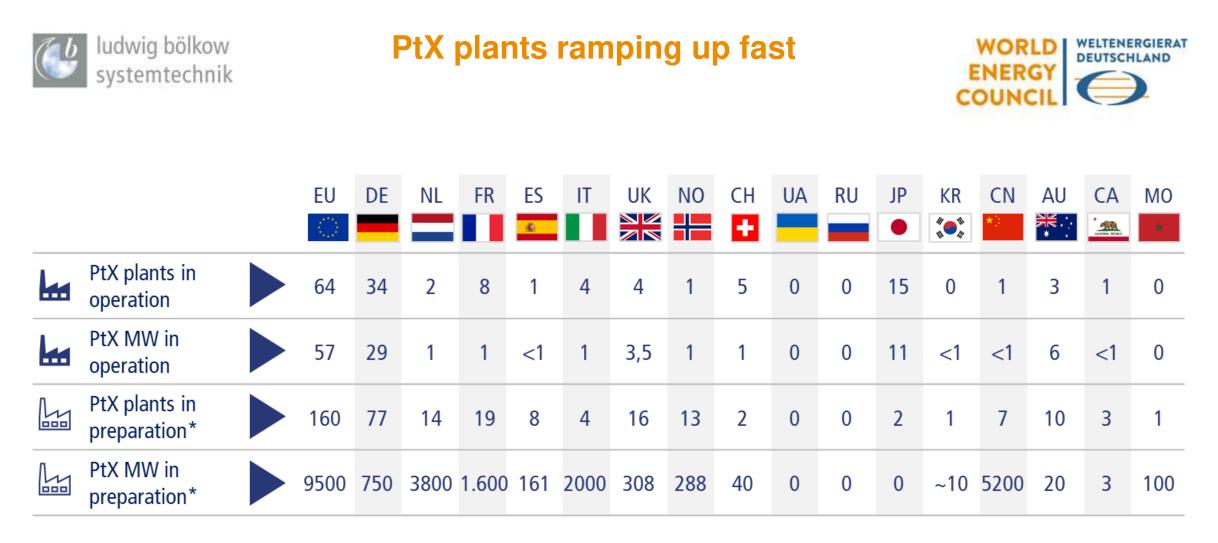
LBST · Ludwig-Bölkow-Systemtechnik GmbH Daimlerstr. 15 · 85521 München/Ottobrunn Germany

www.lbst.de

ludwig bölkow systemtechnik Dr. Carsten Rolle Executive Director T: +49 (0)30-2061 6750 E: rolle@weltenergierat.de

Nicole Kaim-Albers Head of Office T: +49 (0)30-2061 6750 E: kaim@weltenergierat.de

Maira Kusch Senior Manager T: +49 (0)30-2028 1626 E: kusch@weltenergierat.de


World Energy Council – Germany Gertraudenstraße 20 · 10178 Berlin Germany

www.weltenergierat.de

WORLD ENERGY COUNCIL

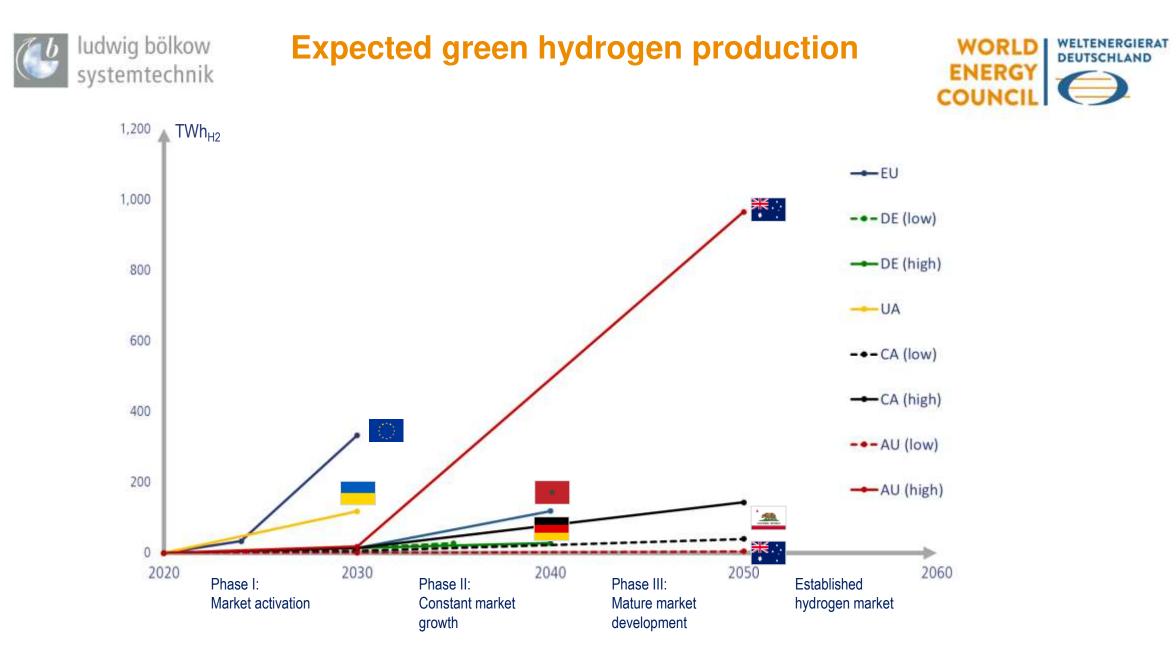
Backup

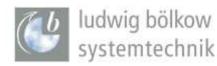
*announced, studied, under construction; incl. plants without detail on size (as of July 2020)

temtechnik					СС	our	ntry	,								ERG	
Transport subsectors	EU	DE	NL	FR	ES *	IT	UK	NO	CH	UA	RU	JP	KR	CN *	AU ₩	CA	MO *
Passenger cars	×	(✓)	\checkmark	×	(✔)	(✓)	(✓)	(✓)	×	\checkmark	×	\checkmark	\checkmark	\checkmark	(✓)	\checkmark	×
Buses	\checkmark	\checkmark	\checkmark	\checkmark	(✔)	(✓)	\checkmark	(✓)	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(•
Trucks	\checkmark	\checkmark	\checkmark	\checkmark	(•	(✓)	\checkmark	\checkmark	\checkmark	(•	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(•
Rail	\checkmark	\checkmark	×	\checkmark	(•	(✓)	\checkmark	(✓)	×	(✓)	(•	(•	(•	\checkmark	×	(✓)	×
Ships	\checkmark	\checkmark	(✓)	\checkmark	(•	(✓)	\checkmark	\checkmark	×	(✓)	×	\checkmark	(•	(✓)	\checkmark	\checkmark	×
Aviation	\checkmark	\checkmark	(✓)	(✓)	(✔)	×	×	×	×	×	×	×	×	(✓)	×	×	×
Other*	\checkmark	\checkmark	×	\checkmark	×	×	×	×	×	×	×	\checkmark	(√)	(√)	×	\checkmark	×

* Material handling, light utility vehicles, special purpose vehicles (e.g. construction machinery, towing tractors) and drones

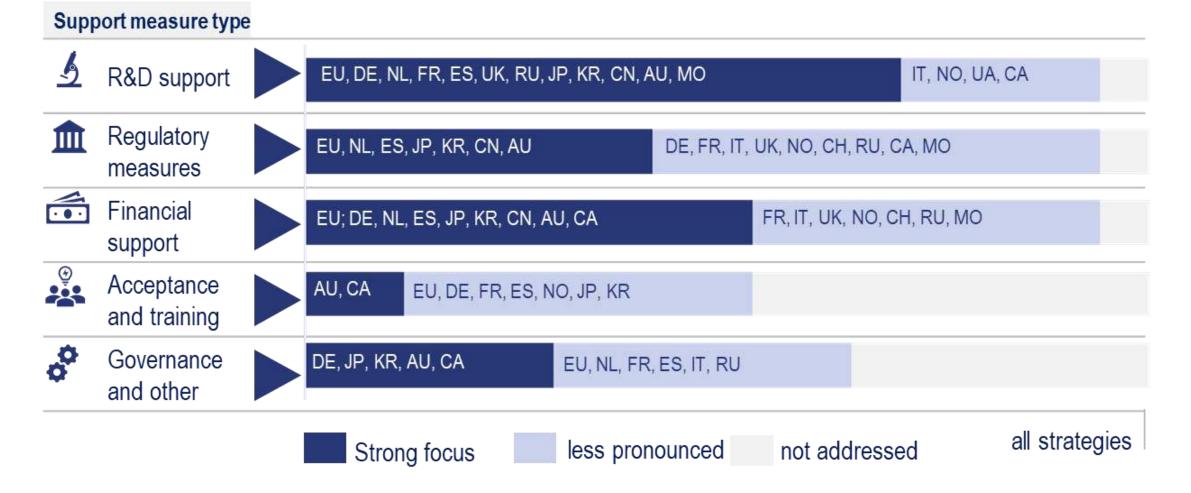
E-fuels play limited role in some strategies


Definition e-fuels


- Synthetic fuels with renewable hydrogen as intermediate product of the Power-to-Fuel process
- In broader sense: Power-to-Liquids (PtL), Power-to-Methane (PtCH4), ammonia, and methanol as fuels

Power-to-Liquids	Power-to-Methane	Ammonia	Methanol
NL: Blending obligation for aviation (14% in 2030; 100% in 2050)	IT: Mentioned in NECP as one of multiple renewable gases	Potential carrier for energy exports/imports: EU, DE, NO, ES, MO, AU, JP, KR	Potential carrier for energy exports/imports: DE,, ES, MO, JP
DE: 2% in aviation in 2030 to be considered ES: Support PtL production and use in aviation	DE: Option for heating in buildings	Green feedstock for industry: EU, DE, NL, ES, NO, AU	Green feedstock for industry: EU, DE, ES, NO, AU
EU (Long-term) option for AU: ships and planes NO: Mentioned for aviation	JP: Potential relevant option to import energy	Potential fuel for ships: EU, NO, UK, AU, KR, AU	Potential fuel for ships: EU, KR

Conclusion

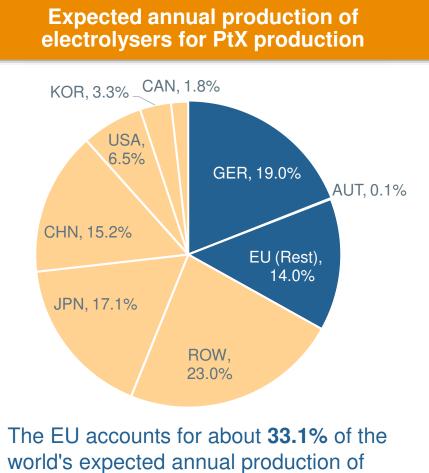

- E-fuels mentioned only in some strategies mainly without quantitative figures (except e.g. PtL for aviation in NL and DE)
- PtL mainly for aviation and maritime sectors; PtCH₄ in gas sector or as carrier for energy import/export; ammonia & methanol as ship fuel or carrier for energy import/export
- Advantages and disadvantages of e-fuels should be evaluated if not taken into account in a strategy

Major support measures per country

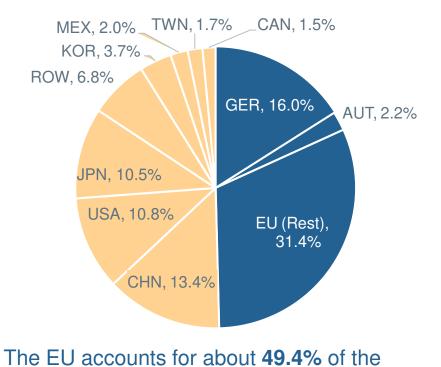
1) Hydrogen imports transit to other counties (e.g. Germany) considered.

2) For Norway, hydrogen is not targeted for direct export, but indirectly through the export of NG with local CCS.

ludwig bölkow systemtechnik


H₂ market development in 3 major phases (examples from selected countries)

Phase I: Market activation Today	Phase II: Constant market 2030	Phase III: growth Mature market 2040 development	Established hydrogen 2050 market
	•		
Market ramp-up start (2 and development (2030			GHG neutrality
H ₂ technology developr demonstration and scal		on First net-zero carbon industrial cluster	
H ₂ technology developr demonstration and scal			Hydrogen society
Expand H ₂ use and sup Develop & demonstrate		Economic growth throu technological leadershi	
Foundation & demo (20 Large market activation			Global exporter


Potential market shares of the European and German manufacturers

electrolysers for PtX production

Expected production of other PtX production capacities by 2020

The EU accounts for about **49.4%** of the expected production of other PtX production equipment in 2020

Source: UN (2018), Frontier Economics 2018

Note: the world market shares excluding exports from trading hubs; countries of the top 10 exporters that can be regarded as individual countries in the impact calculation; PtX world market: reference case

Various countries demonstrate strong potential for PtX production/exports ...

ENERGIERAT

Source: Weltenergierat | Frontier Economics

Wind

Combination

ΡV

© World Energy Council – German Committee 2019 | www.weltenergierat.de | Robin Höher